Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Yong Wu, ${ }^{\text {a }}$ Duan-Jun $\mathbf{X u}$, ${ }^{\mathbf{a} *}$ Jing-Yun $W \mathbf{u}^{\mathbf{b}}$ and Michael Y. Chiang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou Zhejiang, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, National
Sun Yat-Sen University, Kaohsiung, Taiwan
Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.099$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Dichlorobis(thiourea)cobalt(II) di(4,5-diaza-fluoren-9-one)

The title compound, $\left[\mathrm{CoCl}_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \cdot 2 \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$, consists of the tetrahedral cobalt(II) complex and free 4,5-diaza-fluoren-9-one (dafone). Dafone links to the complex through hydrogen bonding between N atoms. The carbonyl bridge in dafone distorts the bipyridine moiety. The longer $\mathrm{N} \cdots \mathrm{N}$ separations of $3.068(3)$ and 3.064 (3) \AA in dafone are considered to be the reason for the weaker chelating ability of dafone.

Comment

As 4,5-diazafluoren-9-one (dafone) is structurally similar to phenanthroline (phen), dafone has been used as a chelating reagent in the preparation of metal complexes. However, most of metal complexes involving dafone show that it is not a good chelating reagent (Menon \& Rajasekharan, 1998). In the structure of the title compound, (I), dafone does not coordinate to the $\mathrm{Co}^{\text {II }}$ ion, but forms a 1:2 cocrystal with the cobaltthiourea complex.

(I)

The molecular structure of (I) is illustrated in Fig. 1. Selected geometric parameters and hydrogen-bonding geometry are listed in Tables 1 and 2, respectively. The crystallographic asymmetric unit consists of one $\mathrm{Co}^{\mathrm{II}}$ complex and two free dafone molecules. The $\mathrm{Co}^{\mathrm{II}}$ atom has a tetrahedral coordination geometry. The coordination plane formed by $\mathrm{Cl} 1, \mathrm{Cl} 2$ and Co is approximately perpendicular to that formed by S1, S2 and Co, the dihedral angle being 88.02 (3) ${ }^{\circ}$. Dafone links to the $\mathrm{Co}^{\mathrm{II}}$ complex through hydrogen bonding between N atoms. The bridge carbonyl in dafone distorts the bipyridine moiety. The larger bond angles of $\mathrm{N} 6-\mathrm{C} 12-\mathrm{C} 13, \mathrm{~N} 5-\mathrm{C} 13-$ $\mathrm{C} 12, \mathrm{~N} 8-\mathrm{C} 23-\mathrm{C} 24$ and $\mathrm{N} 7-\mathrm{C} 24-\mathrm{C} 23$ (see Table 1) result in larger $\mathrm{N} \cdots \mathrm{N}$ separations of 3.068 (3) and 3.064 (3) \AA in dafone, compared to the value of $2.724 \AA$ in free phenanthroline (Nishigaki et al., 1978). This is considered to reduce the overlap of nitrogen-metal orbitals and result in dafone having weaker chelating ability than phen.

Experimental

Dafone was prepared according to the reported methods (Henderson et al., 1984). $0.060 \mathrm{~g}(0.25 \mathrm{mmol}) \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 0.038 \mathrm{~g}(0.5 \mathrm{mmol})$ thiourea and $0.091 \mathrm{~g}(0.5 \mathrm{mmol})$ dafone were mixed in 10 ml ethanol. The blue solution was refluxed for 1 h , then 15 ml benzene was added to the solution. The mixed solution was filtered and the filtrate was

Received 7 March 2002 Accepted 29 April 2002 Online 11 May 2002
allowed to stand at room temperature. Blue crystals were obtained after $4 \mathrm{~d} . \mathrm{C}, \mathrm{H}$ and N were analysed using a Carlo-Erba 1160 instrument. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{CoN}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C $44.59, \mathrm{H}$ 3.12, N 17.33\%; found: C 44.78 , H 3.02, N 17.34%.

Crystal data

$\left[\mathrm{CoCl}_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \cdot 2 \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=646.45$
Triclinic, $P \overline{1}$
$a=7.3902$ (11) \AA 。
$b=12.9763(12) \AA$
$c=15.1615$ (18) A
$\alpha=89.111(10)^{\circ}$
$\beta=78.107(11)^{\circ}$
$\gamma=80.045(10)^{\circ}$
$V=1401.0(3) \AA^{3}$
Data collection
Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.69, T_{\text {max }}=0.87$
5748 measured reflections
5495 independent reflections
3653 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.099$
$S=1.03$
5495 reflections
352 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.532 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20 \\
& \quad \text { reflections } \\
& \theta=4.5-10.2^{\circ} \\
& \mu=0.99 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, blue } \\
& 0.56 \times 0.32 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26^{\circ}$
$h=-9 \rightarrow 8$
$k=-15 \rightarrow 0$
$l=-18 \rightarrow 18$
3 standard reflections every 100 reflections intensity decay: 0.2%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0459 P)^{2}\right. \\
& \quad+0.2616 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-N2	$1.309(3)$	$\mathrm{C} 2-\mathrm{S} 2$	$1.717(3)$
C1-N1	$1.313(3)$	$\mathrm{S} 1-\mathrm{Co}$	$2.3387(9)$
C1-S1	$1.719(3)$	$\mathrm{S} 2-\mathrm{Co}$	$2.3147(8)$
C2-N3	$1.312(3)$	$\mathrm{Cl} 1-\mathrm{Co}$	$2.2330(10)$
C2-N4	$1.315(3)$	$\mathrm{C} 2-\mathrm{Co}$	$2.2692(8)$
N2-C1-N1	$119.1(2)$	$\mathrm{N} 7-\mathrm{C} 24-\mathrm{C} 23$	$126.7(2)$
N2-C1-S1	$121.9(2)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Co}$	$109.43(9)$
N1-C1-S1	$118.9(2)$	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}$	$108.26(9)$
N3-C2-N4	$119.0(2)$	$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{C} 2$	$111.42(4)$
N3-C2-S2	$119.3(2)$	$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{S} 2$	$108.24(3)$
N4-C2-S2	$121.7(2)$	$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{S} 2$	$113.81(3)$
N6-C12-C13	$126.8(2)$	$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{S} 1$	$112.26(4)$
N5-C13-C12	$126.6(2)$	$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{S} 1$	$112.76(3)$
N8-C23-C24	$126.8(2)$	$\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 1$	$97.59(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 5$	0.86	2.06	$2.894(3)$	164
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.84	$3.606(3)$	149
$\mathrm{~N} 2-\mathrm{H} 3 \cdots \mathrm{~N} 6$	0.86	2.14	$2.993(3)$	171
$\mathrm{~N} 2-\mathrm{H} 4 \cdots \mathrm{Cl} 2$	0.86	2.49	$3.321(2)$	163
$\mathrm{~N} 3-\mathrm{H} 5 \cdots \mathrm{~N} 7$	0.86	2.10	$2.944(3)$	167
$\mathrm{~N} 3-\mathrm{H} 6 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.86	2.73	$3.502(2)$	150
N4-H7 8 N 8	0.86	2.11	$2.953(3)$	169
N4-H8 $\cdots \mathrm{Cl} 2$	0.86	2.51	$3.345(2)$	165

Symmetry codes: (i) $1-x,-y,-z$; (ii) $-x, 1-y,-z$.

Figure 1
View of (I) (50\% probability displacement ellipsoids).

H atoms were placed in calculated positions, with $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$ and $\mathrm{C}-\mathrm{H}$ distances of of $0.93 \AA$. All H atoms were included in the final cycles of least-squares refinement as riding on their parent non-H atoms.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997).

This project was supported by the National Natural Science Foundation of China (No. 29973036).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Henderson, L. J. Jr, Fronczek, F. R. \& Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876-5879.
Menon, S. \& Rajasekharan, M. V. (1998). Polyhedron, 17, 2463-2476.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1985). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nishigaki, S., Yoshioka, H. \& Nakatsu, K. (1978). Acta Cryst. B34, 875-879.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

