metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Yong Wu,^a Duan-Jun Xu,^a* Jing-Yun Wu^b and Michael Y. Chiang^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou Zhejiang, People's Republic of China, and ^bDepartment of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.033 wR factor = 0.099 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis(thiourea)cobalt(II) di(4,5-diazafluoren-9-one)

Received 7 March 2002 Accepted 29 April 2002

Online 11 May 2002

The title compound, $[CoCl_2(CH_4N_2S)_2].2C_{11}H_6N_2O$, consists of the tetrahedral cobalt(II) complex and free 4,5-diazafluoren-9-one (dafone). Dafone links to the complex through hydrogen bonding between N atoms. The carbonyl bridge in dafone distorts the bipyridine moiety. The longer N···N separations of 3.068 (3) and 3.064 (3) Å in dafone are considered to be the reason for the weaker chelating ability of dafone.

Comment

As 4,5-diazafluoren-9-one (dafone) is structurally similar to phenanthroline (phen), dafone has been used as a chelating reagent in the preparation of metal complexes. However, most of metal complexes involving dafone show that it is not a good chelating reagent (Menon & Rajasekharan, 1998). In the structure of the title compound, (I), dafone does not coordinate to the Co^{II} ion, but forms a 1:2 cocrystal with the cobalt–thiourea complex.

The molecular structure of (I) is illustrated in Fig. 1. Selected geometric parameters and hydrogen-bonding geometry are listed in Tables 1 and 2, respectively. The crystallographic asymmetric unit consists of one CoII complex and two free dafone molecules. The Co^{II} atom has a tetrahedral coordination geometry. The coordination plane formed by Cl1, Cl2 and Co is approximately perpendicular to that formed by S1, S2 and Co, the dihedral angle being 88.02 (3)°. Dafone links to the Co^{II} complex through hydrogen bonding between N atoms. The bridge carbonyl in dafone distorts the bipyridine moiety. The larger bond angles of N6-C12-C13, N5-C13-C12, N8-C23-C24 and N7-C24-C23 (see Table 1) result in larger N···N separations of 3.068 (3) and 3.064 (3) Å in dafone, compared to the value of 2.724 Å in free phenanthroline (Nishigaki et al., 1978). This is considered to reduce the overlap of nitrogen-metal orbitals and result in dafone having weaker chelating ability than phen.

Experimental

Dafone was prepared according to the reported methods (Henderson *et al.*, 1984). 0.060 g (0.25 mmol) $CoCl_2 \cdot 6H_2O$, 0.038 g (0.5 mmol) thiourea and 0.091 g (0.5 mmol) dafone were mixed in 10 ml ethanol. The blue solution was refluxed for 1 h, then 15 ml benzene was added to the solution. The mixed solution was filtered and the filtrate was

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved allowed to stand at room temperature. Blue crystals were obtained after 4 d. C, H and N were analysed using a Carlo–Erba 1160 instrument. Analysis calculated for $C_{24}H_{20}Cl_2CoN_8O_2S_2$: C 44.59, H 3.12, N 17.33%; found: C 44.78, H 3.02, N 17.34%.

Z = 2

 $D_{\rm r} = 1.532 \,{\rm Mg}\,{\rm m}^{-3}$

Cell parameters from 20

 $0.56 \times 0.32 \times 0.14 \text{ mm}$

Mo $K\alpha$ radiation

reflections

 $\mu = 0.99 \text{ mm}^{-1}$

T = 298 (2) K

Prism, blue

 $R_{\rm int} = 0.023$

 $k=-15\rightarrow 0$

 $l = -18 \rightarrow 18$

3 standard reflections

+ 0.2616P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$

every 100 reflections

intensity decay: 0.2%

 $w = 1/[\sigma^2(F_o^2) + (0.0459P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

 $\theta_{\max} = 26^{\circ}$ $h = -9 \rightarrow 8$

 $\theta = 4.5\text{--}10.2^\circ$

Crystal data

$$\begin{split} & [\operatorname{CoCl}_2(\operatorname{CH}_4\operatorname{N}_2\operatorname{S})_2]\cdot\operatorname{2C}_{11}\operatorname{H}_6\operatorname{N}_2\operatorname{O}\\ & M_r = 646.45\\ & \text{Triclinic, } P\overline{1}\\ & a = 7.3902 \ (11) \ \mathring{A}\\ & b = 12.9763 \ (12) \ \mathring{A}\\ & c = 15.1615 \ (18) \ \mathring{A}\\ & \alpha = 89.111 \ (10)^\circ\\ & \beta = 78.107 \ (11)^\circ\\ & \gamma = 80.045 \ (10)^\circ\\ & V = 1401.0 \ (3) \ \mathring{A}^3 \end{split}$$

Data collection

Rigaku AFC-7*S* diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.69$, $T_{max} = 0.87$ 5748 measured reflections 5495 independent reflections 3653 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.099$ S = 1.035495 reflections 352 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-N2	1.309 (3)	C2-S2	1.717 (3)
C1-N1	1.313 (3)	S1-Co	2.3387 (9)
C1-S1	1.719 (3)	S2-Co	2.3147 (8)
C2-N3	1.312 (3)	Cl1-Co	2.2330 (10)
C2-N4	1.315 (3)	Cl2–Co	2.2692 (8)
N2-C1-N1	119.1 (2)	N7-C24-C23	126.7 (2)
N2-C1-S1	121.9 (2)	C1-S1-Co	109.43 (9)
N1-C1-S1	118.9 (2)	C2-S2-Co	108.26 (9)
N3-C2-N4	119.0 (2)	Cl1-Co-Cl2	111.42 (4)
N3-C2-S2	119.3 (2)	Cl1-Co-S2	108.24 (3)
N4-C2-S2	121.7 (2)	Cl2-Co-S2	113.81 (3)
N6-C12-C13	126.8 (2)	Cl1-Co-S1	112.26 (4)
N5-C13-C12	126.6 (2)	Cl2-Co-S1	112.76 (3)
N8-C23-C24	126.8 (2)	S2-Co-S1	97.59 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H1···N5	0.86	2.06	2.894 (3)	164
$N1 - H2 \cdot \cdot \cdot S1^i$	0.86	2.84	3.606 (3)	149
$N2-H3 \cdot \cdot \cdot N6$	0.86	2.14	2.993 (3)	171
$N2-H4 \cdot \cdot \cdot Cl2$	0.86	2.49	3.321 (2)	163
$N3-H5\cdots N7$	0.86	2.10	2.944 (3)	167
$N3-H6 \cdot \cdot \cdot Cl1^{ii}$	0.86	2.73	3.502 (2)	150
$N4-H7\cdots N8$	0.86	2.11	2.953 (3)	169
N4-H8···Cl2	0.86	2.51	3.345 (2)	165

Symmetry codes: (i) 1 - x, -y, -z; (ii) -x, 1 - y, -z.

H atoms were placed in calculated positions, with N–H distances of 0.86 Å and C–H distances of 0.93 Å. All H atoms were included in the final cycles of least-squares refinement as riding on their parent non-H atoms.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1985); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*3 for Windows (Farrugia, 1997).

This project was supported by the National Natural Science Foundation of China (No. 29973036).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Henderson, L. J. Jr, Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876–5879.
- Menon, S. & Rajasekharan, M. V. (1998). Polyhedron, 17, 2463-2476.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1985). *TEXSAN*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875–879.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.